ICES Database
ElectroMagnetic Field Literature
Search Engine
  

EMF Study
(Database last updated on Mar 27, 2024)

ID Number 2692
Study Type In Vivo
Model Effects of microwave (2100 MHz) exposure on visual evoked potentials (VEPs) and auditory evoked potentials in rats.
Details

AUTHORS' ABSTRACT: Hidisoglu et al. 2016 (IEEE #6680): The purpose of the present study was to investigate the duration effects of 2100-MHz electromagnetic field (EMF) on visual evoked potentials (VEPs) and to assess lipid peroxidation (LPO), nitric oxide (NO) production and antioxidant status of EMF exposed rats. Rats were randomized to following groups: Sham rats (S1 and S10) and rats exposed to 2100-MHz EMF (E1 and E10) for 2h/day for 1 or 10 weeks, respectively. At the end of experimental periods, VEPs were recorded under anesthesia. Brain thiobarbituric acid reactive substances (TBARS) and 4-hydroxy-2-nonenal (4-HNE) levels were significantly decreased in the E1 whereas increased in the E10 compared with their control groups. While brain catalase (CAT), glutathione peroxidase (GSH-Px) activities and NO and glutathione (GSH) levels were significantly increased in the E1, reduction of superoxide dismutase (SOD) activity was detected in the same group compared with the S1. Conversely, decreased CAT, GSH-Px activities and NO levels were observed in the E10 compared with the S10. Latencies of all VEP components were shortened in the E1 compared with the S1, whereas latencies of all VEP components, except P1, were prolonged in the E10 compared with the S10. There was a positive correlation between all VEP latencies and brain TBARS and 4-HNE values. Consequently, it could be concluded that different effects of EMFs on VEPs depend on exposure duration. In addition, our results indicated that short-term EMF could provide protective effects, while long-term EMF could have an adverse effect on VEPs and oxidant/antioxidant status. AUTHORS' ABSTRACT: Hidisoglu et al. 2018 (IEEE #6983): Purpose: There is a growing interest in the usage of radiofrequency radiation (RF) as a noninvasive brain stimulation method. Previously reported data demonstrated that RF exposure caused a change in brain oscillations. Therefore, we aimed to investigate effects of RF on brain oscillation by measuring the auditory response of different brain regions in rats. Materials and methods: Rats were randomly divided into three groups (n = 12 per each group): Cage control (C), sham rats (Sh), and rats exposed to 2.1 GHz RF for 2 h/day for 7 days. At the end of the exposure, auditory evoked potentials (AEPs) were recorded at different locations in rats. Latencies and amplitudes of AEPs, evoked power, inter-trial phase synchronization, and auditory evoked gamma responses were obtained in response to an auditory stimulus. Furthermore, TBARS levels and 4-HNE, GFAP, iNOS, and nNOS expressions were evaluated in all groups. Results: Peak-to-peak amplitudes of AEPs were significantly higher in the RF group compared with the Sh group. There is no significant difference in peak latencies of AEPs between groups. Beside, evoked power, inter-trial phase synchronization, and auditory evoked gamma responses were significantly higher in the RF group compared with the Sh group. In addition, the RF group had significantly lower TBARS and 4-HNE levels than the Sh group. There were no significant differences between groups for GFAP, nNOS, and iNOS levels, and between the C and RF groups for all parameters. Conclusions: Our present findings suggest that short-term RF treatment under chosen experimental conditions have statistically significant effect on neuronal networks of rats by probably reducing oxidative damage. However, this effect must be further studied for possible noninvasive brain stimulation.

Findings Effects
Status Completed With Publication
Principal Investigator 1Akdeniz University, Turkey
Funding Agency Turkey, Akdeniz U Research Foundation
Country TURKEY
References
  • Hidisoglu, E et al. Brain Res., (2016) 1635:1-11
  • Hidisoglu, E et al. International Journal of Radiation Biology., (2018) 94:858-871
  • Comments

    Return