ICES Database
ElectroMagnetic Field Literature
Search Engine
  

EMF Study
(Database last updated on Mar 27, 2024)

ID Number 2664
Study Type In Vitro
Model Here, we aimed to examine the effects of PEMF exposure (50Hz and 1mT PEMF) on brain-derived neurotrophic factor (Bdnf) mRNA expression and the correlation between the intracellular free calcium concentration ([Ca(2+)]i) and Bdnf mRNA expression in cultured dorsal root ganglion neurons (DRGNs).
Details

AUTHORS' ABSTRACT: Li et al. 2014 (IEEE #6590): Although pulsed electromagnetic field (PEMF) exposure has been reported to promote neuronal differentiation, the mechanism is still unclear. Here, we aimed to examine the effects of PEMF exposure on brain-derived neurotrophic factor (Bdnf) mRNA expression and the correlation between the intracellular free calcium concentration ([Ca(2+)]i) and Bdnf mRNA expression in cultured dorsal root ganglion neurons (DRGNs). Exposure to 50Hz and 1mT PEMF for 2h increased the level of [Ca(2+)]i and Bdnf mRNA expression, which was found to be mediated by increased [Ca(2+)]i from Ca(2+) influx through L-type voltage-gated calcium channels (VGCCs). However, calcium mobilization was not involved in the increased [Ca(2+)]i and BDNF expression, indicating that calcium influx was one of the key factors responding to PEMF exposure. Moreover, PD098059, an extracellular signal-regulated kinase (Erk) inhibitor, strongly inhibited PEMF-dependant Erk1/2 activation and BDNF expression, indicating that Erk activation is required for PEMF-induced upregulation of BDNF expression. These findings indicated that PEMF exposure increased BDNF expression in DRGNs by activating Ca(2+)- and Erk-dependent signaling pathways.

Findings Effects
Status Completed With Publication
Principal Investigator Southern Medical U, Guangzhou China
Funding Agency ?????
Country CHINA
References
  • Li, Y et al. Neurochem Int., (2014) 75:96-104
  • Comments

    Return