ICES Database
ElectroMagnetic Field Literature
Search Engine
  

EMF Study
(Database last updated on Mar 27, 2024)

ID Number 2554
Study Type In Vivo
Model Young rats exposed to mobile phone emissions were examined for changes in testes, kidneys and bone development with histopathology and biochemical analyses.
Details

AUTHORS' ABSTRACT: Tumkaya et al. 2016 (IEEE #6298): Mobile phones are extensively used throughout the world. There is a growing concern about the possible public health hazards posed by electromagnetic radiation emitted from mobile phones. Potential health risk applies particularly to the most intensive mobile phone users-typically, young people. The aim of this study was to investigate the effects of mobile phone exposure to the testes, by assessing the histopathological and biochemical changes in the testicular germ cells of rats during pubertal development. A total of 12 male Sprague Dawley rats were used. The study group (n = 6) was exposed to a mobile phone for 1 h a day for 45 days, while the control group (n = 6) remained unexposed. The testes were processed with routine paraffin histology and sectioned. They were stained with hematoxylin-eosin, caspase 3, and Ki-67 and then photographed. No changes were observed between the groups (p > 0.05). The interstitial connective tissue and cells of the exposed group were of normal morphology. No abnormalities in the histological appearance of the seminiferous tubules, including the spermatogenic cycle stage, were observed. Our study demonstrated that mobile phones with a low specific absorption rate have no harmful effects on pubertal rat testicles. AUTHORS' ABSTRACT: Erkut et al. 2016 (IEEE #6360): PURPOSE: To investigated the effects of exposure to an 1800 MHz electromagnetic field (EMF) on bone development during the prenatal period in rats. METHODS: Pregnant rats in the experimental group were exposed to radiation for six, 12, and 24 hours daily for 20 days. No radiation was given to the pregnant rats in the control group. We distributed the newborn rats into four groups according to prenatal EMF exposure as follows: Group 1 was not exposed to EMF; groups 2, 3, and 4 were exposed to EMF for six, 12, and 24 hours a day, respectively. The rats were evaluated at the end of the 60th day following birth. RESULTS: increasing the duration of EMF exposure during the prenatal period resulted in a significant reduction of resting cartilage levels and a significant increase in the number of apoptotic chondrocytes and myocytes. There was also a reduction in calcineurin activities in both bone and muscle tissues. We observed that the development of the femur, tibia, and ulna were negatively affected, especially with a daily EMF exposure of 24 hours. CONCLUSION: Bone and muscle tissue development was negatively affected due to prenatal exposure to 1800 MHz radiofrequency electromagnetic field. AUTHORS' ABSTRACT: Bedir et al. 2019 (IEEE #7206): BACKGROUND: The widespread use by young people of modern communication devices such as mobile phones means that they are particularly exposed to electromagnetic fields (EMF) and other problems. However, few studies have researched the effects of long-term exposure to EMF in the kidney. We therefore investigated oxidative stress and apoptosis in long-term exposure to 2100 megahertz (MHz) in a rat model. MATERIALS AND METHODS: Twenty-four Sprague Dawley rats were divided into a control group (n = 8, no EMF exposure), a group exposed to 2100 MHz for 6 h for 30 d (n = 8), and a group exposed to 2100 MHz for12 h for 30 d (n = 8). Immunohistochemical analysis was performed, using caspase-3 to evaluate apoptosis. Immediately after treatment, reduced glutathione (GSH), malondialdehyde (MDA) in kidney tissue and serum levels of various biochemical compounds were measured to detect oxidative stress. RESULTS: Deterioration was observed in the brush border in renal tubules of the EMF groups. The results of the immunohistochemical analysis revealed a greater number of positively stained renal tubular epithelial cells in the EMF groups as compared with that in the control group. In the EMF groups, renal MDA levels increased, and renal GSH levels decreased compared with those in the control group, as shown by a biochemical examination (p = 0.00 and p = 0.00, respectively). CONCLUSION: The findings showed that exposure to 2100 MHz for 6 and 12 h induced oxidative stress-mediated acute renal injury, depending on the length of exposure and dosage.

Findings No Effects
Status Completed With Publication
Principal Investigator Recep Tayyip Erdoan University, Rize, Turkey
Funding Agency ?????
Country TURKEY
References
  • Tumkaya, L et al. Toxicol Ind Health., (2016) 32:328-336
  • Erkut, A et al. Acta Cir Bras., (2016) 31:74-83
  • Bedir, R et al. Arch Med Res., (2018) 49:432-440
  • Bedir, R et al. Renal failure., (2015) 37:305-309
  • Comments

    Return