ICES Database
ElectroMagnetic Field Literature
Search Engine
  

EMF Study
(Database last updated on Mar 27, 2024)

ID Number 2416
Study Type In Vitro
Model Human lens epithelial cells exposed in vitro to 1.8 GHz fields were analyzed for oxidative stress including gene expression.
Details

AUTHORS' ABSTRACT: Ni et al. 2013 (IEEE #5757): OBJECTIVES: The aims of the present study were to determine oxidative stress and to explore possible reasons of reactive oxygen species (ROS) increase in human lens epithelial (HLE) B3 cells exposed to low intensity 1.8 GHz radiofrequency fields (RF). METHODS: The HLE B3 cells were divided into RF exposure and RF sham-exposure groups. The RF exposure intensity was at specific absorption rate (SAR) of 2, 3, or 4 W/kg. The ROS levels were measured by a fluorescent probe 2'7'-dichlorofluorescin diacetate (DCFH-DA) assay in the HLE B3 cells exposed to 1.8 GHz RF for 0.5, 1, and 1.5 h. Lipid peroxidation and cellular viability were detected by an MDA test and Cell Counting Kit-8 (CCK-8) assays, respectively, in the HLE B3 cells exposed to 1.8 GHz RF for 6, 12, and 24 h, respectively. The mRNA expression of SOD1, SOD2, CAT, and GPx1 genes and the expression of SOD1, SOD2, CAT, and GPx1 proteins was measured by qRT-PCR and Western blot assays in the HLE B3 cells exposed to 1.8 GHz RF for 1 h. RESULTS: The ROS and MDA levels significantly increased (P<0.05) in the RF exposure group and that the cellular viability, mRNA expression of four genes, and expression of four proteins significantly decreased (P<0.05) compared with the RF sham-exposure group. CONCLUSIONS: Oxidative stress is present in HLE B3 cells exposed to 1.8 GHz low-intensity RF and that the increased production of ROS may be related to down-regulation of four antioxidant enzyme genes induced by RF exposure. AUTHORS' ABSTRACT: Zhang et al. 2013 (IEEE #6264): Objective: The aim of the present study was to observe the effects of 1.8 GHz radiofrequency (RF) radiation on the protein expression of human lens epithelial cells (hLECs) in vitro. Methods: The hLECs were exposed and sham-exposed to 1.8 GHz RF radiation (specific absorption rate (SAR) of 4 W/kg) for 2 h. After exposure, the proteins extracted from LECs were loaded on the Ettan MDLC system connected to the LTQ-Orbitrap MS for screening the candidate protein biomarkers induced by RF. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the levels of messenger RNA of candidate biomarkers. After the hLECs were exposed to 1.8 GHz RF (SAR of 2, 3 and 4 W/kg) for 2 h, the Western blot assay was utilized to measure the expression levels of the above-screened candidate protein biomarkers. Results: The results of shotgun proteomic analysis indicated that there were eight proteins with differential expression between exposure and sham exposure groups. The results of qRT-PCR showed that there were three genes with expressional differences (valosin containing protein (VCP), ubiquitin specific peptidase 35 (USP35) and signal recognition particle 68 kDa (SRP68)) between exposure and sham exposure groups. The results of Western blot assay exhibited that the expressional levels of VCP and USP35 proteins significantly increased and the expressional level of protein SRP68 significantly decreased in hLECs exposed to 1.8 GHz RF radiation (SAR of 3 and 4 W/kg) for 2 h when compared with the corresponding sham groups (p < 0.05). Conclusion: The shotgun proteomics technique can be applied to screen the proteins with differential expression between hLECs exposed to 1.8 GHz RF and hLECs sham-exposed to 1.8 GHz RF, and three protein biomarkers associated with RF radiation were validated by Western blot assay. AUTHORS' ABSTRACT: Yu and Yao 2010 (IEEE #6265): Because of the increased use of modern radiofrequency devices, public concern about the possible health effects of exposure to microwave radiation has arisen in many countries. It is well established that high-power microwave radiation can induce cataracts via its thermal effects. It remains unclear whether low-power microwave radiation, especially at levels below the current exposure limits, is cataractogenic. This review summarizes studies on the biological effects of low-power microwave radiation on lens and lens epithelial cells (LECs). It has been reported that exposure affects lens transparency, alters cell proliferation and apoptosis, inhibits gap junctional intercellular communication, and induces genetic instability and stress responses in LECs. These results raise the question of whether the ambient microwave environment can induce non-thermal effects in the lens and whether such effects have potential health consequences. Further in vivo studies on the effects on the lens of exposure to low-power microwave radiation are needed.

Findings Effects
Status Completed With Publication
Principal Investigator Zhejiang U Sch of Med, Hangzhou, China
Funding Agency China National Natural Sc Found
Country CHINA
References
  • Ni, S et al. PLoS One, (2013) 8:e72370-(9 pages)
  • Zhang, Y et al. Human & Experimental Toxicology., (2013) 32:797-806
  • Yu, Y et al. Journal of International Medical Research., (2010) 38:729-736
  • Comments

    Return