ICES Database
ElectroMagnetic Field Literature
Search Engine
  

EMF Study
(Database last updated on Mar 27, 2024)

ID Number 2247
Study Type In Vivo
Model Bioassay in rats exposed at 4 W/kg for 45 min/day, 5 day/week, 1 year.
Details

Authors' abstract: Jin et al. (2010): Purpose:We investigated whether one-year, long-term, simultaneous exposure to code division multiple access (CDMA; 849 MHz) and wideband code division multiple access (WCDMA; 1.95 GHz) radiofrequencies (RF) would induce chronic illness in Sprague-Dawley (SD) rats. Materials and methods:Two groups of 40 SD rats (50% males and females in sham and exposed groups) were exposed to CDMA and WCDMA RF simultaneously at 2.0 W/kg for 45 min/day (total 4.0 W/kg), 5 days per week for a total of one year. Body and organ weight measurements, urinalysis, haematological and blood biochemical analysis, and histopathological evaluations were performed. Results:The mortality patterns in male and female rats exposed to RF were compared with those found in gender-matched sham control animals. No significant alteration in body weight was observed with the simultaneous combined RF exposure. Most RF-exposed rats showed no significant alteration, based on urinalysis, haematology, blood biochemistry, or histopathology. However, some altered parameters of the complete blood count and serum chemistry were seen in RF-exposed rats. The total tumour incidence was not different between sham-exposed and RF-exposed animals. Conclusions:Our results suggest that one-year chronic exposure to CDMA (849 MHz) and WCDMA (1.95 GHz) RF simultaneously at 2.0 W/kg for 45-min RF exposure periods (total, 4 W/kg) did not increase chronic illness in rats, although there were some altered parameters in the complete blood count and serum chemistry. Authors' abstract: Lee et al. 2011: There are public concerns regarding possible carcinogenic or cancer-promoting effects of radiofrequency electromagnetic fields (RF-EMFs) because of the extensive use of wireless mobile phones and other telecommunication devices in daily life. However, so far it is unclear if non-thermal exposure of single EMF exposure in animal studies has a direct influence on carcinogenesis. Here, carcinogenic effects of combined signal RF-EMFs on AKR/J mice, which were used for the lymphoma animal model, were investigated. Six-week-old AKR/J mice were simultaneously exposed to two types of RF signals: single code division multiple access (CDMA) and wideband code division multiple access (WCDMA). AKR/J mice were exposed to combined RF-EMFs for 45 min/day, 5 days/week, for a total of 42 weeks. The whole-body average specific absorption rate (SAR) of CDMA and WCDMA fields was 2.0 W/kg each, 4.0 W/kg in total. When we examined final survival, lymphoma incidence, and splenomegaly incidence, no differences were found between sham- and RF-exposed mice. However, occurrence of metastasis infiltration to the brain in lymphoma-bearing mice was significantly different in RF-exposed mice when compared to sham-exposed mice, even though no consistent correlation (increase or decrease) was observed between male and female mice. However, infiltration occurrence to liver, lung, and spleen was not different between the groups. From the results, we suggested that simultaneous exposure to CDMA and WCDMA RF-EMFs did not affect lymphoma development in AKR/J mice.

Findings No Effects
Status Completed With Publication
Principal Investigator Korea Inst Radiol Med Sci, Korea - yslee@kcch.re.kr
Funding Agency KCC
Country KOREA, REPUBLIC OF
References
  • Jin, YB et al. Int J Radiat Biol. , (2011) 87:416-423
  • Lee, HJ et al. Bioelectromagnetics., (2011) 32:485-492
  • Comments

    Return