ICES Database
ElectroMagnetic Field Literature
Search Engine
  

EMF Study
(Database last updated on Mar 27, 2024)

ID Number 1864
Study Type In Vivo
Model Analysis of brain, kidney, heart, bone, liver, testis, ovary and thymus histopathology and biochemistry in adult rats and/or offspring of pregnant rats exposed to RF signals (e.g., 900, 1800, 2100 and 2600 MHz).
Details

Wistar rats (pregnant dams) were exposed to 900 MHz (CW) for 60 minutes/day between the first and last days of gestation at 2 W/kg (peak in pup) using an exposure system previously described (Koyu et al., 2005; Yildiz et al., 2006). When pups were 4 weeks old, they were sacrificed and brains collected for histological evaluation. The study reported a decrease in granule cells in the dentate gyrus of the hippocampus in exposed rats as compared to controls (P<0.01). The authors observed an increase in darkly stained neurons in exposed animals and suggest the results corroborate the observations of Salford et al (2003). The authors suggest decreased granule cells and increased dark neuron staining may indicate stress related damage and result in impairment of hippocampal-related spatial tasks and learning-induced neurogenesis. In a related study, 16 day old rats (n = 6 exposed, 6 sham, 6 control) were exposed as above to 900 MHz (GSM) for 1 hr/day over 28 days at an estimated 2 W/kkg in the brain. Following the exposure cycle, rat brains were sectioned and evaluated. The authors report a significant decrease in pyramidal cells in the hippocampus with RF exposure. They further make a correlation between the 16 week old rats used in the present study with human teenagers. AUTHORS' ABSTRACT: Sonmez et al. 2010 (IEEE #5624): The biological effects of electromagnetic field (EMF) exposure from mobile phones have growing concern among scientists since there are some reports showing increased risk for human health, especially in the use of mobile phones for a long duration. In the presented study, the effects on the number of Purkinje cells in the cerebellum of 16-week (16 weeks) old female rats were investigated following exposure to 900 MHz EMF. Three groups of rats, a control group (CG), sham exposed group (SG) and an electromagnetic field exposed group (EMFG) were used in this study. While EMFG group rats were exposed to 900 MHz EMF (1h/day for 28 days) in an exposure tube, SG was placed in the exposure tube but not exposed to EMF (1h/day for 28 days). The specific energy absorption rate (SAR) varied between 0.016 (whole body) and 2 W/kg (locally in the head). The CG was not placed into the exposure tube nor was it exposed to EMF during the study period. At the end of the experiment, all of the female rats were sacrificed and the number of Purkinje cells was estimated using a stereological counting technique. Histopathological evaluations were also done on sections of the cerebellum. Results showed that the total number of Purkinje cells in the cerebellum of the EMFG was significantly lower than those of CG (p<0.004) and SG (p<0.002). In addition, there was no significant difference at the 0.05 level between the rats' body and brain weights in the EMFG and CG or SG. Therefore, it is suggested that long duration exposure to 900 MHz EMF leads to decreases of Purkinje cell numbers in the female rat cerebellum. AUTHORS' ABSTRACT: Ulubay et al. 2014 (IEEE 5703): Purpose: To research the harmful effects of prenatal exposure of 900 megahertz (MHz) electromagnetic field (EMF) on kidneys of four-week-old male rats and to determine protective effects of melatonin (MEL) and omega-3 (É-3). Materials and methods: Twenty-one Wistar albino rats were randomly placed into seven groups as follows: control (Cont), Sham, MEL, É-3, EMF, EMF+MEL and EMF+É-3. After mating, three groups (EMF, EMF+MEL, EMF+ É-3) were exposed to an EMF. In the fourth week subsequent to parturition, six rats were randomly chosen from each group. Mean volume of kidneys and renal cortices, the total number of glomeruli and basic histological structure of kidney were evaluated by stereological and light microscopical methods, respectively. Results: Stereological results determined the mean volume of the kidneys and cortices were significantly increased in EMF-exposed groups compared to the Cont group. However, EMF-unexposed groups were not significantly modified compared to the Cont group. Additionally, the total number of glomeruli was significantly higher in EMF-unexposed groups compared to the Cont group. Alternatively, the number of glomeruli in EMF-exposed groups was decreased compared to the Cont group. Conclusions: Prenatal exposure of rat kidneys to 900 MHz EMF resulted in increased total kidney volume and decreased the numbers of glomeruli. Moreover, MEL and É-3 prevented adverse effects of EMF on the kidneys. AUTHORS' ABSTRACT: Topal et al. 2015 (IEEE #5829): Background/aim: To determine what effect a 900-MHz electromagnetic field (EMF) applied in the prenatal period would have on the liver in the postnatal period. Materials and methods: At the start of the study, adult pregnant rats were divided into two groups, control and experimental. The experimental group was exposed to a 900-MHz EMF for 1 h daily during days 1321 of pregnancy. After birth, no procedure was performed on either mothers or pups. Male rat pups (n = 6) from the control group mothers (CGMR) and male rat pups (n = 6) from the experimental group mothers (EGMR) were sacrificed on postnatal day 21. Results: Biochemical analyses showed that malondialdehyde and superoxide dismutase values increased and glutathione levels decreased in the EGMR pups. Marked hydropic degeneration in the parenchyma, particularly in pericentral regions, was observed in light microscopic examination of EGMR sections stained with hematoxylin and eosin. Examinations under transmission electron microscope revealed vacuolization in the mitochondria, expansion in the endoplasmic reticulum, and necrotic hepatocytes. Conclusion: The study results show that a 900-MHz EMF applied in the prenatal period caused oxidative stress and pathological alterations in the liver in the postnatal period. AUTHORS' ABSTRACT: Türedi et al. 2014 (IEEE #5872): The growing spread of mobile phone use is raising concerns about the effect on human health of the electromagnetic field (EMF) these devices emit. The purpose of this study was to investigate the effects on rat pup heart tissue of prenatal exposure to a 900 megahertz (MHz) EMF. For this purpose, pregnant rats were divided into experimental and control groups. Experimental group rats were exposed to a 900 MHz EMF (1 h/d) on days 1321 of pregnancy. Measurements were performed with rats inside the exposure box in order to determine the distribution of EMF intensity. Our measurements showed that pregnant experimental group rats were exposed to a mean electrical field intensity of 13.77 V/m inside the box (0.50 W/m2). This study continued with male rat pups obtained from both groups. Pups were sacrificed on postnatal day 21, and the heart tissues were extracted. Malondialdehyde, superoxide dismutase and catalase values were significantly higher in the experimental group rats, while glutathione values were lower. Light microscopy revealed irregularities in heart muscle fibers and apoptotic changes in the experimental group. Electron microscopy revealed crista loss and swelling in the mitochondria, degeneration in myofibrils and structural impairments in Z bands. Our study results suggest that exposure to EMF in the prenatal period causes oxidative stress and histopathological changes in male rat pup heart tissue. AUTHRS' ABSTRACT: Odaci and Ozyilmaz 2015 (IEEE #6022): PURPOSE: To investigate the effect of exposure to a 900 megahertz (MHz) electromagnetic field (EMF) on the rat testicle. MATERIALS AND METHODS: Twenty-four adult male rats were divided into control, sham and EMF groups. The EMF group rats were exposed to 900 MHz EMF (1 h/30 day), and testicles were extracted at the end of the experiment. Malondialdehyde, superoxide dismutase, catalase and glutathione levels and apoptotic index and histopathological damage scores were compared. RESULTS: Histopathologically, EMF group rats exhibited vacuoles in seminiferous tubules basal membrane and edema in the intertubular space. Seminiferous tubule diameters and germinal epithelium thickness were both smaller, and apoptotic index was higher, in the EMF group than in the other groups. Malondialdehyde, superoxide dismutase, catalase and glutathione values in the EMF group decreased significantly compared to those of the control group. CONCLUSIONS: The results show that exposure to 900 MHz EMF causes alterations in adult rat testicular morphology and biochemistry. AUTHORS' ABSTRACT: Odaci et al. 2015 (IEEE #6145): Large numbers of people are unknowingly exposed to electromagnetic fields (EMF) from wireless devices. Evidence exists for altered cerebellar development in association with prenatal exposure to EMF. However, insufficient information is still available regarding the effects of exposure to 900 megahertz (MHz) EMF during the prenatal period on subsequent postnatal cerebellar development. This study was planned to investigate the 32-day-old female rat pup cerebellum following exposure to 900 MHz EMF during the prenatal period using stereological and histopathological evaluation methods. Pregnant rats were divided into control, sham and EMF groups. Pregnant EMF group (PEMFG) rats were exposed to 900 MHz EMF for 1 h inside an EMF cage during days 1321 of pregnancy. Pregnant sham group (PSG) rats were also placed inside the EMF cage during days 1321 of pregnancy for 1 h, but were not exposed to any EMF. No procedure was performed on the pregnant control group (PCG) rats. Newborn control group (CG) rats were obtained from the PCG mothers, newborn sham group (SG) rats from the PSG and newborn EMF group (EMFG) rats from the PEMFG rats. The cerebellums of the newborn female rats were extracted on postnatal day 32. The number of Purkinje cells was estimated stereologically, and histopathological evaluations were also performed on cerebellar sections. Total Purkinje cell numbers calculated using stereological analysis were significantly lower in EMFG compared to CG (p < 0.05) and SG (p < 0.05). Additionally, some pathological changes such as pyknotic neurons with dark cytoplasm were observed in EMFG sections under light microscopy. In conclusion, our study results show that prenatal exposure to EMF affects the development of Purkinje cells in the female rat cerebellum and that the consequences of this pathological effect persist after the postnatal period. AUTHORS' ABSTRACT: Odaci et al. 2015 (IEEE #6146). We investigated the effects on kidney tissue of 900 megahertz (MHz) EMF applied during the prenatal period. Pregnant rats were exposed to 900 MHz EMF, 1 h/day, on days 13-21 of pregnancy; no procedure was performed on control group pregnant rats or on mothers or newborns after birth. On postnatal day 21, kidney tissues of male rat pups from both groups were examined by light and electron microscopy. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione levels also were investigated. Light microscopy revealed some degenerative changes in the tubule epithelium, small cystic formations in the primitive tubules and large cysts in the cortico-medullary or medullary regions in the experimental group. Electron microscopy revealed a loss of peritubular capillaries and atypical parietal layer epithelial cells in the experimental group. Biochemical analysis showed significantly increased MDA levels in the experimental group and decreased SOD and CAT levels. EMF applied during the prenatal period can caused pathological changes in kidney tissue in 21-day-old male rats owing to oxidative stress and decreased antioxidant enzyme levels. AUTHORS' ABSTRACT: Odaci et al. 2015 (IEEE #6147): We investigated the effects of exposure in utero to a 900 megahertz (MHz) electromagnetic field (EMF) on 60-day-old rat testis and epididymis. Pregnant rats were divided into control (CG; no treatment) and EMF (EMFG) groups. The EMFG was exposed to 900 MHz EMF for 1 h each day during days 13 - 21 of pregnancy. Newborn rats were either newborn CG (NCG) or newborn EMF groups (NEMFG). On postnatal day 60, a testis and epididymis were removed from each animal. Epididymal semen quality, and lipid and DNA oxidation levels, apoptotic index and histopathological damage to the testis were compared. We found a higher apoptotic index, greater DNA oxidation levels and lower sperm motility and vitality in the NEMFG compared to controls. Immature germ cells in the seminiferous tubule lumen, and altered seminiferous tubule epithelium and seminiferous tubule structure also were observed in hematoxylin and eosin stained sections of NEMFG testis. Nuclear changes that indicated apoptosis were identified in TUNEL stained sections and large numbers of apoptotic cells were observed in most of the seminiferous tubule epithelium in the NEMFG. Sixty-day-old rat testes exposed to 900 MHz EMF exhibited altered sperm quality and biochemical characteristics. AUTHORS' ABSTRACT: Sahin, Odaci et al. 2015 (IEEE #6148): Children are at potential risk due to their intense use of mobile phones. We examined 8-week-old rats because this age of the rats is comparable with the preadolescent period in humans. The number of pyramidal neurons in the cornu ammonis of the Sprague Dawley male rat (8-weeks old, weighing 180-250g) hippocampus following exposure to a 900MHz (MHz) electromagnetic field (EMF) were examined. The study consisted of control (CN-G), sham exposed (SHM-EG) and EMF exposed (EMF-EG) groups with 6 rats in each. The EMF-EG rats were exposed to 900MHz EMF (1h/day for 30 days) in an EMF jar. The SHM-EG rats were placed in the EMF jar but not exposed to the EMF (1h/day for 30 days). The CN-G rats were not placed into the exposure jar and were not exposed to the EMF during the study period. All animals were sacrificed at the end of the experiment, and their brains were removed for histopathological and stereological analysis. The number of pyramidal neurons in the cornu ammonis of the hippocampus was estimated on Cresyl violet stained sections of the brain using the optical dissector counting technique. Histopathological evaluations were also performed on these sections. Histopathological observation showed abundant cells with abnormal, black or dark blue cytoplasm and shrunken morphology among the normal pyramidal neurons. The largest lateral ventricles were observed in the EMF-EG sections compared to those from the other groups. Stereological analyses showed that the total number of pyramidal neurons in the cornu ammonis of the EMF-EG rats was significantly lower than those in the CN-G (p<0.05) and the SHM-EG (p<0.05). In conclusion, our results suggest that pyramidal neuron loss and histopathological changes in the cornu ammonis of 8-week-old male rats may be due to the 900-MHz EMF exposure. AUTHORS' ABSTRACT: Hanci, Odaci et al. 2015 (IEEE #6149): We investigated the effects of a 900 Megahertz (MHz) electromagnetic field (EMF), applied during the prenatal period, on the spleen and thymus of 21-day-old male rat pups. Pregnant Sprague-Dawley rats were divided into control and EMF groups. We applied 900 MHz EMF for 1 h/day to the EMF group of pregnant rats. Newborn male rat pups were removed from their mothers and sacrificed on postnatal day 21. Spleen and thymus tissues were excised and examined. Compared to the control group, thymus tissue malondialdehyde levels were significantly higher in the group exposed to EMF, while glutathione levels were significantly decreased. Increased malondialdehyde and glutathione levels were observed in splenic tissue of rats exposed to EMF, while a significant decrease occurred in superoxide dismutase values compared to controls. Transmission electron microscopy showed pathological changes in cell morphology in the thymic and splenic tissues of newborn rats exposed to EMF. Exposure to 900 MHz EMF during the prenatal period can cause pathological and biochemical changes that may compromise the development of the male rat thymus and spleen. AUTHORS' ABSTRACT: Bas et al. 2013 (IEEE #6243): The number of studies reporting that the electromagnetic field (EMF) emitted by mobile phones affects human health is increasing by the day. In previous studies we reported that a 900 megahertz (MHz) EMF applied throughout the prenatal period reduced the number of pyramidal cells in the cornu ammonis of rat pups in the postnatal period. In this study we investigated the effect of a 900 MHz EMF applied on days 13-21 of the prenatal period on the number of pyramidal cells in the cornu ammonis of rat pups in the postnatal period. For that purpose, pregnant rats were divided into experimental and control groups. Experimental group pregnant rats were exposed to the effect of a 900 MHz EMF on days 13-21 of pregnancy. No procedure was applied to the control group. Newborn female rat pups were added to the study, and no procedure was performed on these after birth. Five newborn female rats were obtained from the experimental group and six from the control group. All female rat pups were decapitated on the postnatal 32nd day, and histological procedures were performed on the brain tissues. Sections were stained with Cresyl fast violet. The optical dissector technique was used to estimate the total number of pyramidal cells in the cornu ammonis. Sections of cornu ammonis were subjected to histopathological evaluations. Our results showed that exposure to 900 MHz EMF during prenatal days 13-21 led to a significant decrease in the number of pyramidal cells in the cornu ammonis of the experimental group female rat pups (P<0.05). Histopathological examination revealed picnotic cells in the cornu ammonis in experimental female rat pups. The pyramidal cell loss in the cornu ammonis may therefore be attributed to exposure to 900 MHz EMF in days 13-21 of the prenatal period. AUTHORS' ABSTRACT: Ikinci et al. 2013 (IEEE #6247): The purpose of this study was to examine the effect on hippocampus morphology and learning behavior in rat pups following prenatal exposure to a 900 megahertz (MHz) electromagnetic field (EMF). Female Sprague Dawley rats weighing 180-250 g were left to mate with males. The following day, pregnant rats identified as such by the vaginal smear test were divided into two groups, control (n=3) and EMF (n=3). No procedures were performed on the control group. The rats in the EMF group were exposed to 900 MHz EMF on days 13 to 21 of pregnancy, for 1 h a day. Female rat pups were removed from their mothers at 22 days old. We then established two newborn rat groups, a 13 member control group and a 10 member EMF group. Radial arm maze and passive avoidance tests were used to measure rat pups learning and memory performance. All rats were decapitated on the postnatal 32nd day. Routine histological procedures were performed on the brain tissues, and sections were stained with Cresyl fast violet. The radial arm maze (p=0.007) and passive avoidance (p=0.032) tests were administered to both groups under identical conditions, and compromised learning behavior was determined in the EMF group rats. Morphological compromise was also determined in the EMF group sections. Our results show that the application of a 900 MHz EMF in the prenatal period adversely affected female pups learning behavior and also resulted in histopathological changes appearing in the hippocampus. AUTHORS' ABSTRACT: Turedi et al. 2016 (IEEE #6351): The effects on human health of electromagnetic field (EMF) have begun to be seriously questioned with the entry into daily life of devices establishing EMF, such as cell phones, wireless fidelity, and masts. Recent studies have reported that exposure to EMF, particularly during pregnancy, affects the developing embryo/fetus. The aim of this study was therefore to examine the effects of exposure to continuous 900-Megahertz (MHz) EMF applied in the prenatal period on ovarian follicle development and oocyte differentiation. Six pregnant Sprague Dawley rats were divided equally into a non-exposed control group (CNGr) and a group (EMFGr) exposed to continuous 900-MHz EMF for 1 h daily, at the same time every day, on days 13-21 of pregnancy. New groups were established from pups obtained from both groups after birth. One group consisting of female pups from CNGr rats was adopted as newborn CNGr (New-CNGr, n = 6), and another group consisting of female pups from EMFGr rats was adopted as newborn EMFGr (New-EMFGr, n = 6). No procedure was performed on New-CNGr or New-EMFGr rats. All rat pups were sacrificed on the postnatal 34th day, and their ovarian tissues were removed. Follicle count, histological injury scoring and morphological assessment with apoptotic index criteria were performed with sections obtained following routine histological tissue preparation. Follicle count results revealed a statistically significant decrease in primordial and tertiary follicle numbers in New-EMFGr compared to New-CNGr (p < 0.05), while atretic follicle numbers and apoptotic index levels increased significantly (p < 0.05). Histopathological examination revealed severe follicle degeneration, vasocongestion, a low level of increased stromal fibrotic tissue and cytoplasmic vacuolization in granulosa cell in New-EMFGr. Prenatal exposure to continuous 900-MHz EMF for 1 h each day from days 13-21 led to a decrease in ovarian follicle reservoirs in female rat pups at the beginning of the prepubertal period. AUTHORS' ABSTRACT: Ikinci, Odaci et al. 2015 (IEEE #6371): The effects of devices emitting electromagnetic field (EMF) on human health have become the subject of intense research among scientists due to the rapid increase in their use. Children and adolescents are particularly attracted to the use of devices emitting EMF, such as mobile phones. The aim of this study was therefore to investigate changes in the spinal cords of male rat pups exposed to the effect of 900MHz EMF. The study began with 24 Sprague-Dawley male rats aged 3 weeks. Three groups containing equal numbers of rats were established-control group (CG), sham group (SG) and EMF group (EMFG). EMFG rats were placed inside an EMF cage every day between postnatal days (PD) 21 and 46 and exposed to the effect of 900MHz EMF for 1h. SG rats were kept in the EMF cage for 1h without being exposed to the effect of EMF. At the end of the study, the spinal cords in the upper thoracic region of all rats were removed. Tissues were collected for biochemistry, light microscopy (LM) and transmission electron microscopic (TEM) examination. Biochemistry results revealed significantly increased malondialdehyde and glutathione levels in EMFG compared to CG and SG, while SG and EMFG catalase and superoxide dismutase levels were significantly higher than those in CG. In EMFG, LM revealed atrophy in the spinal cord, vacuolization, myelin thickening and irregularities in the perikarya. TEM revealed marked loss of myelin sheath integrity and invagination into the axon and broad vacuoles in axoplasm. The study results show that biochemical alterations and pathological changes may occur in the spinal cords of male rats following exposure to 900MHz EMF for 1h a day on PD 21-46. AUTHORS' ABSTRACT: Hanci Odaci et al. 2013 (IEEE #6372): The aim of this study was to investigate the effect of exposure to a 900-MHz electromagnetic field (EMF) in the prenatal term on the 21-old-day rat testicle. Pregnant rats were divided into control (CG) and EMF (EMFG) groups. EMFG was exposed to 900-MHz EMF during days 13-21 of pregnancy. Newborn CG rats were obtained from the CG and newborn EMFG (NEMFG) rats from the EMFG. Testicles were extracted at postnatal day 21. Lipid peroxidation and DNA oxidation levels, apoptotic index and histopathological damage scores were compared. NEMFG rats exhibited irregularities in seminiferous tubule basal membrane and epithelium, immature germ cells in the lumen, and a decreased diameter in seminiferous tubules and thickness of epithelium. Apoptotic index, lipid peroxidation and DNA oxidation were higher in NEMFG rats than in NCG. 21-day-old rat testicles exposed to 900-MHz EMF in the prenatal term may be adversely affected, and this effect persists after birth. AUTHORS' ABSTRACT: Kaplan et al. 2016 (IEEE #6451): Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. AUTHORS' ABSTRACT: Terzi et al. 2016 (IEEE #6506): In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is What is the effect of EMFs on human health? Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue. AUTHORS' ABSTRACT: Kerimoglu et al. 2016 (IEEE #6511): Cell phones, an indispensable element of daily life, are today used at almost addictive levels by adolescents. Adolescents are therefore becoming increasingly exposed to the effect of the electromagnetic field (EMF) emitted by cell phones. The purpose of this study was to investigate the effect of exposure to a 900-MHz EMF throughout adolescence on the lumbar spinal cord using histopathological, immunohistochemical and biochemical techniques. Twenty-four Sprague Dawley (28.3-43.9g) aged 21days were included in the study. These were divided equally into three groups - control (CG), sham (SG) and electromagnetic (ELMAG). No procedure was performed on the CG rats until the end of the study. SG and ELMAG rats were kept inside an EMF cage (EMFC) for 1h a day every day at the same time between postnatal days 22 and 60. During this time, ELMAG rats were exposed to the effect of a 900-MHz EMF, while the SG rats were kept in the EMFC without being exposed to EMF. At the end of the study, the lumbar regions of the spinal cords of all rats in all groups were extracted. Half of each extracted tissue was stored at -80°C for biochemical analysis, while the other half was used for histopathological and immunohistochemical analyses. In terms of histopathology, a lumbar spinal cord with normal morphology was observed in the other groups, while morphological irregularity in gray matter, increased vacuolization and infiltration of white matter into gray matter were pronounced in the ELMAG rats. The cytoplasm of some neurons in the gray matter was shrunken and stained dark, and vacuoles were observed in the cytoplasms. The apoptotic index of glia cells and neurons were significantly higher in ELMAG compared to the other groups. Biochemical analysis revealed a significantly increased MDA value in ELMAG compared to CG, while SOD and GSH levels decreased significantly. In conclusion, our study results suggest that continuous exposure to a 900-MHz EMF for 1h a day through all stages of adolescence can result in impairments at both morphological and biochemical levels in the lumbar region spinal cords of Sprague Dawley rats. AUTHORS' ABSTRACT: Kerimoglu et al. 2016 (IEEE #6527): The central nervous system (CNS) begins developing in the intrauterine period, a process that continues until adulthood. Contact with chemical substances, drugs or environmental agents such as electromagnetic field (EMF) during adolescence therefore has the potential to disturb the development of the morphological architecture of components of the CNS (such as the hippocampus). The hippocampus is essential to such diverse functions as memory acquisition and integration and spatial maneuvering. EMF can result in severe damage to both the morphology of the hippocampus and its principal functions during adolescence. Although children and adolescents undergo greater exposure to EMF than adults, the information currently available regarding the effects of exposure to EMF during this period is as yet insufficient. This study investigated the 60-day-old male rat hippocampus following exposure to 900 megahertz (MHz) EMF throughout the adolescent period using stereological, histopathological and biochemical analysis techniques. Eighteen male Sprague Dawley rats aged 21days were assigned into control, sham and EMF groups on a random basis. No procedure was performed on the control group rats. The EMF group (EMFGr) was exposed to a 900-MHz EMF for 1h daily from beginning to end of adolescence. The sham group rats were held in the EMF cage but were not exposed to EMF. All rats were sacrificed at 60days of age. Their brains were extracted and halved. The left hemispheres were set aside for biochemical analyses and the right hemispheres were subjected to stereological and histopathological evaluation. Histopathological examination revealed increased numbers of pyknotic neurons with black or dark blue cytoplasm on EMFGr slides stained with cresyl violet. Stereological analyses revealed fewer pyramidal neurons in EMFGr than in the other two groups. Biochemical analyses showed an increase in malondialdehyde and glutathione levels, but a decrease in catalase levels in EMFGr. Our results indicate that oxidative stress-related morphological damage and pyramidal neuron loss may be observed in the rat hippocampus following exposure to 900-MHz EMF throughout the adolescent period. AUTHORS' ABSTRACT: Odaci et al. 2016 (IEEE #6528): Large numbers of people are unknowingly exposed to electromagnetic fields (EMF) from wireless devices. Evidence exists for altered cerebellar development in association with prenatal exposure to EMF. However, insufficient information is still available regarding the effects of exposure to 900 megahertz (MHz) EMF during the prenatal period on subsequent postnatal cerebellar development. This study was planned to investigate the 32-day-old female rat pup cerebellum following exposure to 900 MHz EMF during the prenatal period using stereological and histopathological evaluation methods. Pregnant rats were divided into control, sham and EMF groups. Pregnant EMF group (PEMFG) rats were exposed to 900 MHz EMF for 1 h inside an EMF cage during days 1321 of pregnancy. Pregnant sham group (PSG) rats were also placed inside the EMF cage during days 1321 of pregnancy for 1 h, but were not exposed to any EMF. No procedure was performed on the pregnant control group (PCG) rats. Newborn control group (CG) rats were obtained from the PCG mothers, newborn sham group (SG) rats from the PSG and newborn EMF group (EMFG) rats from the PEMFG rats. The cerebellums of the newborn female rats were extracted on postnatal day 32. The number of Purkinje cells was estimated stereologically, and histopathological evaluations were also performed on cerebellar sections. Total Purkinje cell numbers calculated using stereological analysis were significantly lower in EMFG compared to CG (p < 0.05) and SG (p < 0.05). Additionally, some pathological changes such as pyknotic neurons with dark cytoplasm were observed in EMFG sections under light microscopy. In conclusion, our study results show that prenatal exposure to EMF affects the development of Purkinje cells in the female rat cerebellum and that the consequences of this pathological effect persist after the postnatal period. AUTHORS' ABSTRACT: Kerimoglu, Odaci, et al. 2016 (IEEE #6552): The pathological effects of exposure to an electromagnetic field (EMF) during adolescence may be greater than those in adulthood. We investigated the effects of exposure to 900 MHz EMF during adolescence on male adult rats. Twenty-four 21-day-old male rats were divided into three equal groups: control (Cont-Gr), sham (Shm-Gr) and EMF-exposed (EMF-Gr). EMF-Gr rats were placed in an EMF exposure cage (Plexiglas cage) for 1 h/day between postnatal days 21 and 59 and exposed to 900 MHz EMF. Shm-Gr rats were placed inside the Plexiglas cage under the same conditions and for the same duration, but were not exposed to EMF. All animals were sacrificed on postnatal day 60 and the hearts were extracted for microscopic and biochemical analyses. Biochemical analysis showed increased levels of malondialdehyde and superoxide dismutase, and reduced glutathione and catalase levels in EMF-Gr compared to Cont-Gr animals. Hematoxylin and eosin stained sections from EMF-Gr animals exhibited structural changes and capillary congestion in the myocardium. The percentage of apoptotic myocardial cells in EMF-Gr was higher than in either Shm-Gr or Cont-Gr animals. Transmission electron microscopy of myocardial cells of EMF-Gr animals showed altered structure of Z bands, decreased myofilaments and pronounced vacuolization. We found that exposure of male rats to 900 MHz EMF for 1 h/day during adolescence caused oxidative stress, which caused structural alteration of male adolescent rat heart tissue. AUTHORS' ABSTRACT: Kulaber, Odaci et al. 2017 (IEEE #6778): We investigated changes in thymic tissue of male rats exposed to a 900 megahertz (MHz) electromagnetic field (EMF) on postnatal days 2259. Three groups of six 21-day-old male Sprague-Dawley rats were allocated as: control (CG), sham (SG) and EMF (EMFG) groups. No procedure was performed on the CG rats. SG rats were placed in a Plexiglas cage for 1 h every day between postnatal days 22 and 59 without exposure to EMF. EMFG rats were placed in the same cage for the same periods as the SG rats and were exposed to 900 MHz EMF. Rats were sacrificed on postnatal day 60. Sections of thymus were stained for histological assessment. Oxidant/antioxidant parameters were investigated biochemically. Malondialdehyde (MDA) levels in EMFG increased compared to the other groups. Extravascular erythrocytes were observed in the medullary/corticomedullary regions in EMFG sections. We found that 900 MHz EMF applied for 1 h/day on postnatal days 2259 can increase tissue MDA and histopathological changes in male rat thymic tissue. AUTHORS' ABSTRACT: Turedi, Odaci et al. 2017 (IEEE #6797): PURPOSE: To investigate the effect on male rat kidney and bladder tissues of exposure to 900-megahertz (MHz) electromagnetic field (EMF) applied on postnatal days 22-59, inclusive. MATERIALS AND METHODS: Twenty-four male Sprague Dawley rats, aged 21 days, were used. These were divided equally into one of three groups, control (CG), sham (SG) or EMF (EMFG). CG was not exposed to any procedure. SG rats were kept inside a cage, without being exposed to the effect of EMF, for 1 h a day on postnatal days 22-59, inclusive. EMFG rats were exposed to continuous 900-MHz EMF for 1 h a day under the same conditions as those for the SG rats. Rats were sacrificed on postnatal day 60, and the kidney and bladder tissues were removed. Tissues were stained with hematoxylin and eosin (H&E) and Masson trichrome for histomorphological evaluation. The TUNEL method was used to assess apoptosis. Transmission electron microscopy (TEM) was also used for the kidney tissue. Oxidant/antioxidant parameters were studied in terms of biochemical values. RESULTS: The findings showed that tissue malondialdehyde increased in EMFG compared to CG and SG in both kidney (p = 0.004 and p = 0.004, respectively) and bladder tissue (p = 0.004, p = 0.006, respectively), while catalase and glutathione levels decreased compared to CG (p = 0.004; p = 0.004, respectively) and SG (p = 0.004; p = 0.004, respectively). In the EMF group, pathologies such as dilatation and vacuolization in the distal and proximal tubules, degeneration in glomeruli and an increase in cells tending to apoptosis were observed in kidney tissue. In bladder tissue, degeneration in the transitional epithelium and stromal irregularity and an increase in cells tending to apoptosis were observed in EMFG. Additionally, EMFG samples exhibited glomerular capillary degeneration with capillary basement membranes under TEM. CONCLUSIONS: We conclude that continuous exposure to the effect of 900-MHz EMF for 1 h a day on postnatal days 22-59, inclusive, causes an increase in oxidative stress and various pathological changes in male rat kidney and bladder tissues. AUTHORS' ABSTRACT: Kerimoglu, Odaci et al. 2018 (IEEE #6930): The effects on human health of the electromagnetic field (EMF) emitted by mobile phones, used by approximately 7 billion people worldwide, have become an important subject for scientific research. Studies have suggested that the EMF emitted by mobile phones can cause oxidative stress in different tissues and age groups. Young people in adolescence, a time period when risky behaviors and dependences increase, use mobile phones more than adults. The EMF emitted by mobile phones, which are generally carried in the pocket or in bags when not in use, will very probably affect the sciatic nerve. No previous study has investigated the effect of mobile phone use in adolescence on peripheral nerve. This study was planned accordingly. Twenty-four male Sprague Dawley rats aged 21/days were divided equally into control (CGr), Sham (SGr) and EMF (EMFGr) groups. No procedure was performed on CGr rats. EMFGr were exposed to the effect of a 900-megahertz (MHz) EMF for 1/h at the same time every day between postnatal days 2159 (the entire adolescent period) inside a cage in the EMF apparatus. SGr rats were placed inside the cage for 1/h every day without being exposed to EMF. All rats were sacrificed at the end of the study period, and 1/cm sections of sciatic nerve were extracted. Malondialdehyde (MDA), glutathione, catalase (CAT) superoxide dismutase (SOD) values were investigated biochemically in half of the right sciatic nerve tissues. The other halves of the nerve tissues were subjected to routine histopathological tissue procedures, sectioned and stained with hematoxylin and eosin (H&E) and Massons trichrome. Histopathological evaluation of slides stained with Massons trichrome and H&E revealed a normal appearance in Schwann cells and axons in all groups. However, there was marked thickening in the epineurium of sciatic nerves from EMFGr rats. MDA, SOD and CAT levels were higher in EMFGr than in CGr and SGr at biochemical analyses. Apoptot1c index (AI) analysis revealed a significant increase in the number of TUNEL (+) cells when EMFGr was compared with CGr and SGr. In conclusion, our study results suggest that continuous exposure to a 900-MHz EMF for 1/h throughout adolescence can cause oxidative injury and thickening in the epineurium in the sciatic nerve in male rats. AUTHORS' ABSTRACT: Okatan, Odaci et al. 2018 (IEEE #6985): PURPOSE: The purpose of this study was to use histological and biochemical methods in order to evaluate changes taking place in the ovarian of rats exposed to the effect of a 900-megahertz (MHz) electromagnetic field (EMF) in middle and late adolescence. MATERIALS AND METHODS: Twenty-four 34-d-old female Sprague-Dawley rats were assigned equally to control, sham and EMF groups. EMF group rats were exposed to the effect of a 900-MHz EMF for 1 h a day, at the same time every day between postnatal days 35 and 59, while inside an EMF cage. Sham group rats were kept inside the EMF cage for the same time between postnatal days 35 and 59 without being exposed to any EMF effect. At the end of the study, rats' ovarian were removed and blood specimens were taken. Right ovarium tissues were subjected to routine histological procedures and stained with hematoxylin and eosin, periodic acid shift and Masson's trichrome. Follicles were counted in ovarian sections stained with hematoxylin and eosin. The TUNEL method was used to evaluate apoptosis. Left ovarian tissue and blood specimens were investigated biochemically. RESULTS: Histopathological examination of EMF group ovarian tissue revealed thinning in the zona granulosa and theca layers, shrinking in granulosa cells, reduced mitotic activity and leukocyte infiltration in the follicles and stroma. Secondary follicle numbers in the EMF group were significantly lower than in the other groups. In terms of biochemistry, EMF and sham group superoxide dismutase, catalase and anti-Mullerian hormone levels and EMF group 3-nitrotyrosine values increased significantly compared to the control group. EMF and sham group serum catalase and 8-hydroxy-deoxiguanosine values increased significantly compared to the control group, and EMF group total oxidant status and oxidative stress index values were significantly higher compared to the sham and control groups. CONCLUSIONS: A total of 900-MHz EMF applied in middle and late adolescence may cause changes in the morphology and biochemistry of the rat ovarium. AUTHORS' ABSTRACT: Yahyazadeh and Altunkaynak 2019 (IEEE #7207): Increasing cell phone use calls for clarification of the consequences of long term exposure to electromagnetic fields (EMF). We investigated the effects of EMF on the testes of 12-week-old rats as well as possible protective effects of luteolin on testis tissue. Twenty-four Wistar albino rats were randomly divided into four groups: control, EMF, luteolin, and EMF + luteolin. The number of Leydig cells, primary spermatocytes and spermatids were reduced in the EMF group compared to the control group. In the EMF + luteolin group, the number of Leydig cells, primary spermatocytes and spermatids was significantly greater than the EMF group. We found an increase in superoxide dismutase (SOD) activity in the EMF group compared to the control group. In the EMF group, we found decreased wet weight of testes and serum testosterone levels compared to the control group. Decreased SOD enzyme activity, and increased serum testosterone levels and weight of the testes were observed in the EMF + luteolin group compared to the EMF group. EMF also affected sperm morphology. We found that in rat testis repeated exposure to 900 MHz EMF caused changes in testicular tissue and that the antioxidant, luteolin, substantially reduced the deleterious effects of EMF.

Findings Effects
Status Completed With Publication
Principal Investigator Karadeniz Technical University, Trabzon Turkey - eodaci@yahoo.com
Funding Agency ?????
Country TURKEY
References
  • Bas, O et al. Toxicol Ind Health, (2009) 25:377-384
  • Bas, O et al. Brain Res, (2009) 1265:178-185
  • Odaci, E et al. Brain Res, (2008) 1238:224-229
  • Sonmez, OF et al. Brain Res., (2010) 1356:95-101
  • Ulubay , M et al. Int J Radiat Biol., (2015) 91:35-41
  • Topal, Z et al. Turkish Journal of Medical Sciences., (2015) 45:291-297
  • Türedi, S et al. Electromagnetic Biology and Medicine., (2015) 34:390-397
  • Odaci, E et al. Int J Radiat Biol., (2015) 91:547-554
  • Odaci, E et al. Journal of Chemical Neuroanatomy., (2016) 75 (Pt B):105-110
  • Odaci, E et al. Biotech Histochem., (2015) 90:93-101
  • Odaci, E et al. Biotech Histochem., (2016) 91:9-19
  • Sahin, A et al. Brain Res., (2015) 1624:232-238
  • Hanci, H et al. Biotech Histochem., (2015) 90:535-543
  • Bas, O et al. NeuroQuantology [Internet]. http://www.neuroquantology.com/index.php/journal/article/view/701, (2013) 11:591-599
  • Ikinci, A et al. NeuroQuantology [Internet]. http://www.neuroquantology.com/index.php/journal/article/view/699, (2013) 11(4):582-590
  • Türedi, S et al. International Journal of Radiation Biology., (2016) 92:329-337
  • Ikinci, A et al. J Chem Neuroanat., (2016) 75 (Part B):99-104
  • Hanci, H et al. Reprod Toxicol., (2013) 42:203-209
  • Kaplan, S et al. J Chem Neuroanat., (2016) 75 (Pt B):52-61
  • Terzi, M et al. Journal of Chemical Neuroanatomy., (2016) 75(Part B):77-84
  • Kerimoglu, G et al. J Chem Neuroanat., (2016) 78:125-130
  • Kerimoglu, G et al. J Chem Neuroanat. , (2016) 77:169-175
  • Odaci, E et al. Journal of Chemical Neuroanatomy., (2016) 75 (Part B):105-110
  • Kerimoglu, G et al. Biotech Histochem. , (2016) 91:7:445-454
  • Kulaber, A et al. Biotechnic & Histochemistry., (2017) :-
  • Turedi, S et al. Int J Radiat Biol., (2017) 93:990-999
  • Kerimoglu, G et al. Journal of Chemical Neuroanatomy., (2018) 91:1-7
  • Okatan, DO et al. Int J Radiat Biol., (2018) 94:186-198
  • Keles, AI et al. Journal of Chemical Neuroanatomy., (2018) 94:46-53
  • Yahyazadeh, A et al. Biotech Histochem., (2019) 94:298-307
  • Okatan, DO et al. Biotech Histochem., (2019) 94:420-428
  • Yahyazadeh, A et al. Journal of Chemical Neuroanatomy., (2019) 100:101657-
  • Keles, AI et al. Journal of Chemical Neuroanatomy., (2019) 101:101681-
  • Yahyazadeh, A et al. Acta Histochem., (2019) 151467:-
  • Yahyazadeh, A et al. Biomed Environ Sci. (51), 33:593-602, (2020) 33:593-602
  • Hanci, H et al. Reprod. Toxicol., (2018) 81:71-78
  • Okatan, ADO et al. Toxicol. Ind. Health., (2018) 34:693-702
  • Keles, AI et al. Toxicol Ind Health., (2021) 37:189-197
  • Odaci, E et al. Neuroquantology., (2013) 11:573-581
  • Aslan, A et al. Biotechnic & Histochemistry., (2017) 92:324-330
  • Altunkaynak, BZ et al. J Chem Neuroanat., (2016) 75:62-69
  • Bas, O et al. Rev Assoc Med Bras., (2022) 68:1383-1388
  • Comments

    A schematic diagram of the exposure setup was provided in Koyu 2005 and shows a plastic conical restraining tube with a half wave dipole antenna running parallel with the body of the rat and positioned ~1 cm from the bottom of the restraining tube (exposing the animal non-uniformly from the bottom). Although the authors suggest corroboration of Salford et al, observations reported by Salford at recent 2006 and 2007 Bioelectromagnetic Society meetings suggested the observation could not be repeated at 14 and 26 days post exposure or when exposures were repeated multiple times over the course of a 50 day period.

    Return